Similar to SLS, Multi Jet Fusion also builds functional parts from nylon powder. Rather than using a laser to sinter the powder, MJF uses an inkjet array to apply fusing agents to the bed of nylon powder. Then a heating element passes over the bed to fuse each layer. This results in more consistent mechanical properties compared to SLS as well as improved surface finish. Another benefit of the MJF process is the accelerated build time, which leads to lower production costs.
Fused deposition modeling (FDM) is a common desktop 3D printing technology for plastic parts. An FDM printer functions by extruding a plastic filament layer-by-layer onto the build platform. It’s a cost-effective and quick method for producing physical models. There are some instances when FDM can be used for functional testing but the technology is limited due to parts having relatively rough surface finishes and lacking strength.
Metal 3D printing opens up new possibilities for metal part design. The process we use at Protolabs to 3D print metal parts is direct metal laser sintering (DMLS). It’s often used to reduce metal, multi-part assemblies into a single component or lightweight parts with internal channels or hollowed out features. DMLS is viable for both prototyping and production since parts are as dense as those produced with traditional metal manufacturing methods like machining or casting. Creating metal components with complex geometries also makes it suitable for medical applications where a part design must mimic an organic structure.
Electron beam melting is another metal 3D printing technology that uses an electron beam that's controlled by electromagnetic coils to melt the metal powder. The printing bed is heated up and in vacuum conditions during the build. The temperature that the material is heated to is determined by the material in use.
As stated earlier, there are a couple common denominators among 3D printing applications. If your part quantities are relatively low, 3D printing can be optimal—the guidance we give our 3D printing service customers is usually 1 to 50 parts. As volumes start to near the hundreds, it’s worth exploring other manufacturing processes. If your design features complex geometry that is critical to your part’s function, like an aluminum component with an internal cooling channel, 3D printing might be your only option.
Selecting the right process comes down to aligning the advantages and limitations of each technology to your application’s most important requirements. In the early stages when ideas are being thrown around and all you need is a model to share with a colleague, those stair-stepping surface finishes on your part aren’t of much concern. But once you hit the point where you need to conduct user testing, factors like cosmetics and durability start to matter. Although there is no one-size-fits-all solution, properly utilizing 3D printing technology throughout product development will reduce design risk and, ultimately, result in better products.
1. Fused Deposition Modeling (FDM),
sometimes called Fused Filament Fabrication (FFF) is a 3D printing technology that uses a process called Material Extrusion. Material Extrusion devices are the most widely available - and inexpensive - of the types of 3D printing technology in the world today.
They work by a process where a spool of filament of solid thermoplastic material (PLA, ABS, PET) is loaded into the 3D printer. It is then pushed by a motor through a heated nozzle, where it melts. The printer’s extrusion head then moves along specific coordinates, depositing the 3D printing material on a build platform where the printer filament cools and solidifies, forming a solid object.
Once the layer is complete, the printer lays down another layer, repeating the process until the object is fully formed. Depending on the object’s complexity and geometry, support structures are sometimes added, for example, if the object has steep overhanging parts.
Common applications for FDM include electrical housings, form and fit testings, jigs and fixtures, and investment casting patterns.
Strengths of FDM are that it offers the best surface finish plus full color along with the fact there are multiple materials available for its use.
It is limited by being brittle, therefore unsuitable for mechanical parts. It also has a higher cost than SLA/DLP.
If you are looking for more details, kindly visit No.4 Stain Stainless Steel Sheets, Ti-Bronze Hairline Stainless Steel Sheet, antique copper hairline stainless steel sheets.