A standard-gauge railway is a railway with a track gauge of 1,435 mm (4 ft 8+1⁄2 in). The standard gauge is also called Stephenson gauge (after George Stephenson), international gauge, UIC gauge, uniform gauge, normal gauge and European gauge in Europe,[1][2][3][4][5] and SGR in East Africa. It is the most widely used track gauge around the world, with about 55% of the lines in the world using it.
All high-speed rail lines use standard gauge except those in Russia, Finland, and Uzbekistan. The distance between the inside edges of the rails is defined to be 1,435 mm except in the United States, Canada, and on some heritage British lines, where it is defined in U.S. customary/Imperial units as exactly "four feet eight and one half inches",[6] which is equivalent to 1,435.1 mm.
History
[
edit
]
As railways developed and expanded, one of the key issues was the track gauge (the distance, or width, between the inner sides of the rails) to be used. Different railways used different gauges, and where rails of different gauge met – a "gauge break" – loads had to be unloaded from one set of rail cars and reloaded onto another, a time-consuming and expensive process. The result was the adoption throughout a large part of the world of a "standard gauge" of 1,435 mm (4 ft 8+1⁄2 in), allowing interconnectivity and interoperability.
Origins
[
edit
]
A popular legend that has circulated since at least 1937[7] traces the origin of the 1,435 mm (4 ft 8+1⁄2 in) gauge even further back than the coalfields of northern England, pointing to the evidence of rutted roads marked by chariot wheels dating from the Roman Empire.[a][8] Snopes categorised this legend as "false", but commented, that it "is perhaps more fairly labeled as "Partly true, but for trivial and unremarkable reasons".[9] The historical tendency to place the wheels of horse-drawn vehicles around 5 ft (1,524 mm) apart probably derives from the width needed to fit a carthorse in between the shafts.[9] Research, however, has been undertaken to support the hypothesis that "the origin of the standard gauge of the railway might result from an interval of wheel ruts of prehistoric ancient carriages".[10][better source needed]
In addition, while road-travelling vehicles are typically measured from the outermost portions of the wheel rims, it became apparent that for vehicles travelling on rails, having main wheel flanges that fit inside the rails is better, thus the minimum distance between the wheels (and, by extension, the inside faces of the rail heads) was the important one.
A standard gauge for horse railways never existed, but rough groupings were used; in the north of England none was less than 4 ft (1,219 mm). Wylam colliery's system, built before 1763, was 5 ft (1,524 mm), as was John Blenkinsop's Middleton Railway; the old 4 ft (1,219 mm) plateway was relaid to 5 ft (1,524 mm) so that Blenkinsop's engine could be used. Others were 4 ft 4 in (1,321 mm) (in Beamish) or 4 ft 7+1⁄2 in (1,410 mm) (in Bigges Main (in Wallsend), Kenton, and Coxlodge).[12]
English railway pioneer George Stephenson spent much of his early engineering career working for the coal mines of County Durham. He favoured 4 ft 8 in (1,422 mm) for wagonways in Northumberland and Durham, and used it on his Killingworth line. The Hetton and Springwell wagonways also used this gauge.
Stephenson's Stockton and Darlington railway (S&DR) was built primarily to transport coal from mines near Shildon to the port at Stockton-on-Tees. Opening in 1825, the initial gauge of 4 ft 8 in (1,422 mm) was set to accommodate the existing gauge of hundreds of horse-drawn chaldron wagons[13] that were already in use on the wagonways in the mines. The railway used this gauge for 15 years before a change was made, debuting around 1850, to the 1,435 mm (4 ft 8+1⁄2 in) gauge.[page needed] The historic Mount Washington Cog Railway, the world's first mountain-climbing rack railway, is still in operation in the 21st century, and has used the earlier 4 ft 8 in (1,422 mm) gauge since its inauguration in 1868.
George Stephenson introduced the 1,435 mm (4 ft 8+1⁄2 in) gauge (including a belated extra 1⁄2 in (13 mm) of free movement to reduce binding on curves ) for the Liverpool and Manchester Railway, authorised in 1826 and opened 30 September 1830. The extra half inch was not regarded at first as very significant, and some early trains ran on both gauges daily without compromising safety.[16]
The success of this project led to Stephenson and his son Robert being employed to engineer several other larger railway projects. Thus the 4 ft 8+1⁄2 in (1,435 mm) gauge became widespread and dominant in Britain. Robert was reported to have said that if he had had a second chance to choose a gauge, he would have chosen one wider than 4 ft 8+1⁄2 in (1,435 mm).[17][18] "I would take a few inches more, but a very few".[19]
During the "gauge war" with the Great Western Railway, standard gauge was called "narrow gauge", in contrast to the Great Western's 7 ft 1⁄4 in (2,140 mm) broad gauge. The modern use of the term "narrow gauge" for gauges less than standard did not arise for many years, until the first such locomotive-hauled passenger railway, the Ffestiniog Railway was built.[citation needed]
Adoption
[
edit
]
In 1845, in the United Kingdom of Great Britain and Ireland, a Royal Commission on Railway Gauges reported in favour of a standard gauge. The subsequent Gauge Act ruled that new passenger-carrying railways in Great Britain should be built to a standard gauge of 4 ft 8+1⁄2 in (1,435 mm), and those in Ireland to a new standard gauge of 5 ft 3 in (1,600 mm). In Great Britain, Stephenson's gauge was chosen on the grounds that existing lines of this gauge were eight times longer than those of the rival 7 ft or 2,134 mm (later 7 ft 1⁄4 in or 2,140 mm) gauge adopted principally by the Great Western Railway. It allowed the broad-gauge companies in Great Britain to continue with their tracks and expand their networks within the "Limits of Deviation" and the exceptions defined in the Act.
After an intervening period of mixed-gauge operation (tracks were laid with three rails), the Great Western Railway finally completed the conversion of its network to standard gauge in 1892. In North East England, some early lines in colliery (coal mining) areas were 4 ft 8 in (1,422 mm), while in Scotland some early lines were 4 ft 6 in (1,372 mm). The British gauges converged starting from 1846 as the advantages of equipment interchange became increasingly apparent. By the 1890s, the entire network was converted to standard gauge.
The Royal Commission made no comment about small lines narrower than standard gauge (to be called "narrow gauge"), such as the Ffestiniog Railway. Thus it permitted a future multiplicity of narrow gauges in the UK. It also made no comments about future gauges in British colonies, which allowed various gauges to be adopted across the colonies.
Parts of the United States, mainly in the Northeast, adopted the same gauge, because some early trains were purchased from Britain. The American gauges converged, as the advantages of equipment interchange became increasingly apparent. Notably, all the 5 ft (1,524 mm) broad gauge track in the South was converted to "almost standard" gauge 4 ft 9 in (1,448 mm) over the course of two days beginning on 31 May 1886.[20] See Track gauge in the United States.
In continental Europe, France and Belgium adopted a 1,500 mm (4 ft 11+1⁄16 in) gauge (measured between the midpoints of each rail's profile) for their early railways.[21] The gauge between the interior edges of the rails (the measurement adopted from 1844) differed slightly between countries, and even between networks within a country (for example, 1,440 mm or 4 ft 8+11⁄16 in to 1,445 mm or 4 ft 8+7⁄8 in in France). The first tracks in Austria and in the Netherlands had other gauges (1,000 mm or 3 ft 3+3⁄8 in in Austria for the Donau Moldau line and 1,945 mm or 6 ft 4+9⁄16 in in the Netherlands for the Hollandsche IJzeren Spoorweg-Maatschappij), but for interoperability reasons (the first rail service between Paris and Berlin began in 1849, first Chaix timetable) Germany adopted standard gauges, as did most other European countries.
The modern method of measuring rail gauge was agreed in the first Berne rail convention of 1886.[22]
Early railways by gauge
[
edit
]
Non-standard gauge
[
edit
]
Almost standard gauge
[
edit
]
Standard gauge
[
edit
]
Small deviations from standard gauge
[
edit
]
Dual gauge
[
edit
]
Initially standard gauge
[
edit
]
Several lines were initially built as standard gauge but were later converted to another gauge for cost or for compatibility reasons.[citation needed]
1,067 mm
(3 ft 6 in
)1,000 mm
(3 ft
3
+
3
⁄8
in)1,067 mm
(3 ft 6 in
)1,600 mm
(5 ft 3 in
) – Dublin and Kingstown Railway1,600 mm
(5 ft 3 in
) – Victoria & South Australia – partly converted to1,435 mm
(4 ft
8
+
1
⁄2
in)1,676 mm
(5 ft 6 in
) – initial freight linesModern almost standard gauge railways
[
edit
]
Railways
[
edit
]
Non-rail use
[
edit
]
Several states in the United States had laws requiring road vehicles to have a consistent gauge to allow them to follow ruts in the road. Those gauges were similar to railway standard gauge.[61]
See also
[
edit
]
Notes
[
edit
]
The gaps in the pedestrian crossings in Pompeii could give credence or otherwise to this statement, but no relevant studies appear to have been made.
For the Philippine National Railways, 2,278 km (1,415 mi) for the Mindanao Railway, 296 km (184 mi) for the North–South Commuter Railway (NSCR),298 km (185 mi) for NSCR extensions,92 km (57 mi) for the Northeast Commuter Line to Cabanatuan 581 to 639 km (361 to 397 mi) for the South Main Line rehabilitation, 71 km (44 mi) for the Subic–Clark Railway, 244 km (152 mi) for the San Jose Tuguegarao line,and 175 km (109 mi) for the Tarlac–San Fernando line.Proposed MRT lines have a total length of 370 km (230 mi), discounting the Monorail Line 4 LRT Line 1 extension is 26 km (16 mi),while LRT Line 6's total proposed track length is 169 km (105 mi).All figures mentioned denote track length, not line or system length.
References
[
edit
]
Bibliography
[
edit
]
History of track gauge: The gauge of a railroad is the distance between the inside vertical surfaces of the head of the rail. Standard gauge is 4 feet, 8-1/2 inches. This is the gauge used when steam railroading began. It became the common gauge of Britain, North America, and Western Europe — except for Spain, Portugal, and Ireland.
When George Stephenson designed the Stockton & Darlington Railway in the north of England in 1825, he used a gauge of 4 feet, 8 inches simply because he had been familiar with it on a mine tramway called the Willington Way on the Tyne River below Newcastle. In turn, the Willington Way was built to this gauge. It was common on roads in the area. After the Stockton & Darlington, Stephenson used the same 4 feet, 8 inches for the Liverpool & Manchester, the world’s first railway between major cities. There he widened the gauge by one-half inch, probably to give more lateral play to the flanges.
At the outset, the choice of 4 feet 8-1/2 appeared arbitrary. The tramways of the Newcastle area had a variety of other gauges, wider and narrower, any of which Stephenson might have chosen.
By the 1870s, archeological excavations at Pompeii and elsewhere revealed that the gauge Stephenson chose may have been the approximate gauge of Roman road vehicles. In a famous episode, an American engineer, Walton W. Evans sought to test this hypothesis by measuring with a metric rule — so as to avoid bias — the ruts made by carts and chariots at Pompeii. He converted his measurements to inches and found that the ruts, center to center, were about 4 feet, 9 inches, consistent with a gauge of slightly less than that. Later archeology confirmed that this was the Romans’ common gauge.
The survival of this gauge for road vehicles in Western Europe, including Britain, resulted in its being carried over onto early railways. An oral tradition says it was established at two strides of a Roman soldier by Julius Caesar to standardize ruts for his war chariots, but this has no documentary evidence and is not generally accepted. As English railway historian Charles E. Lee wrote, it probably represents the optimal size of a road vehicle relative to the indivisible size of a horse. Anything less would have underutilized the horse, and anything greater would have put excessive strain on the animal. The gauge has been carried over into automotive transport, also.
In railroading, the optimal gauge with respect to a horse is irrelevant. Rather, the relevant indivisibility is that of a human being. Any technological process has to be adapted to the fact that human beings generally come only in one size, from 5 feet, 0 inches to 6 feet, 6 inches. Certainly, the gauge of 4 feet, 8-1/2, inches was not grossly inappropriate. It allowed passenger cars that seated two people in comfort on each side of an aisle wide enough for people to pass. Freight cars were large enough to accommodate the size of packages that people could carry in and stack. The equipment had a moderate degree of overhang.
There has never been a lack of observers who thought 4 feet 8-1/2 was suboptimal — men as disparate as James J. Hill, David P. Morgan, and Adolf Hitler, to name three. Essentially, this interpretation is based on the fact that area-volume ratios of cylinders become more favorable as size increases. As a consequence, large boilers produce their output at a lower average cost than small ones. On a broad-gauge steam locomotive, the boiler could be larger and slung lower for greater stability.
The man who followed broad-gauge ideology most thoroughly was Isambard Kingdom Brunel, chief engineer of the Great Western Railway of England, who thought 4 feet 8-1/2, much too small for the operations at 50 to 60 mph that he envisioned. He adopted a huge gauge of seven feet — apparently exactly 7 feet, 0-1/4 inches — for the Great Western, and testified before Parliament enthusiastically of its superiority. Parliament was not convinced, and mandated 4 feet 8-1/2 for future building, but specified 5 feet 3 for Ireland. This could be interpreted as indicating Parliament really considered a broader gauge preferable, but required 4 feet 8-1/2 simply because it was nearly universal except in the west of England. The Great Western was converted to 4 feet 8-1/2, slowly, bringing broad-gauge operation to an end in 1892.
The American experience was similar. The gauge of 4 feet, 8-1/2 inches came here mainly because American engineers expected — erroneously — to use a great many British locomotives. Because early American railroads were expected only to connect bodies of water that were impractical to connect with canals, there is no reason to have expected much gauge uniformity. Early railroads did not anticipate interchange of equipment.
But because the Baltimore & Ohio and Boston & Albany used 4 feet, 8-1/2 inches, the gauge was off to a flying start. The Pennsylvania used 4 feet, 9 inches, which was compatible. The 6 feet, 0 inches of the Erie and the Lackawanna was the most important northern broad gauge. The Canadian railways used 5 feet, 6 inches, at least in part, for military considerations.
In the South, broad gauges were dominant. If there was a common gauge there, it was 5 feet, 0 inches. By 1861, track of this gauge extended from Norfolk and Richmond to Memphis and New Orleans, although lack of some physical connections and interchange kept it from being a network.
The Civil War demonstrated the undesirability of gauge differences. Both the Union and Confederate governments encouraged interchange of equipment. After the war, the rapid growth in grain movements from the Midwest to the East was the greatest single force for homogeneity.
The Lincoln administration, after planning the transcontinental railroad at 5 feet, 0 inches to conform with the existing railroad in California, decided on 4 feet 8-1/2 for consistency with the most important Eastern railroads. This assured that 4 feet, 8-1/2 inches would be the North American standard gauge.
The Canadian lines converted to it in 1872-1873, and the Southern railroads began a process of conversion that ended with a massive conversion blitz on Memorial Day weekend 1886.
Oddly, as gauge homogeneity was spreading throughout the continent, there arose a movement for narrow-gauge railroads. A Scottish engineer, Robert Fairlie, in 1870 exposited the idea that great economies in weight could be achieved by use of small equipment such as had become common for private carriers serving mines, timber stands, and factories. His fallacy was reversing the actual relation mentioned earlier, that area-volume ratios become more favorable as size increases.
Remarkably under the circumstances, the narrow-gauge movement had a vogue of 13 years, from 1872 to 1885, before it collapsed. Most U.S. narrow-gauge mileage was converted by 1900, although a 3-foot-gauge network in southwestern Colorado survived for almost a century.
The damage this movement did was much worse elsewhere. It festooned most of sub-Saharan Africa with a gauge (3 feet, 6 inches) poorly suited to the heavy mineral traffic its railways handled, and it beset India, Australia, and Argentina with serious problems of gauge incompatibility.
The editor of the principal railroad trade journal of the 19th century, Matthias Nace Forney of The Railroad Gazette, in the course of his opposition to the narrow-gauge movement in the 1870s, reported that railroad engineers with whom he had discussed the question had responded, in general, that 4 feet, 8-1/2 inches was slightly suboptimal, and that something around 5 feet 0 would have been better. Forney agreed, but felt that homogeneity for free-running of equipment nationwide at 4 feet 8-1/2 was more important than any gains that could be gotten by an effort at change.
No doubt modern engineering techniques could be used to identify an optimal gauge, but short of an impressive demonstration to the contrary, Forney’s view of the 1870s remains the most valid judgment.