What are the applications of porous ceramics?

20 May.,2024

 

Application of Porous Ceramics

  • Abebe, L.S., Chen, X., Sobsey, M.D.: Chitosan coagulation to improve microbial and turbidity removal by ceramic water filtration for household drinking water treatment. Int. J. Environ. Res. Public Health 13, 269 (2016)

    If you are looking for more details, kindly visit our website.

  • Adam, M.R., Othman, M.H.D., Kadir, S.H.S.A., Sokri, M.N.M., Tai, Z.S., Iwamoto, Y., Tanemura, M., Honda, S., Puteh, M.H., Rahman, M.A., Rahman, M.A., Jaafar, J.: Influence of the natural zeolite particle size toward the ammonia adsorption activity in ceramic hollow fiber membrane. Membranes (Basel) 10 (2020). https://doi.org/10.3390/membranes10040063

  • Adams, B.A., Holmes, E.L.: Adsorptive properties of synthetic resins. J. Soc. Chem. Ind. 54, 1–6 (1935)

  • Adamson, D.T., Piña, E.A., Cartwright, A.E., Rauch, S.R., Anderson, R.H., Mohr, T., Connor, J.A.: 1, 4-dioxane drinking water occurrence data from the third unregulated contaminant monitoring rule. Sci. Total Environ. 596, 236–245 (2017)

  • Al-Jawoosh, S., Ireland, A., Su, B.: Characterisation of mechanical and surface properties of novel biomimetic interpenetrating alumina-polycarbonate composite materials. Dent. Mater. 36, 1595–1607 (2020). https://doi.org/10.1016/j.dental.2020.09.016

  • An, D., Li, H., Xie, Z., Zhu, T., Luo, X., Shen, Z., Ma, J.: Additive manufacturing and characterization of complex Al2O3 parts based on a novel stereolithography method. Int. J. Appl. Ceram. Technol. 14, 836–844 (2017)

  • Aneziris, C.G., Ansorge, A., Jaunich, H.: New approaches of carbon bonded foam filters for filtration of large castings. In: Cfi-Ceramic Forum International, pp. E100–E103. Goller Verlag GMBH, Baden Baden (2008)

  • Arici, S., Regan, D.: Alternatives to ceramic brackets: the tensile bond strengths of two aesthetic brackets compared ex vivo with stainless steel foil-mesh bracket bases. Br. J. Orthod. 24, 133–137 (1997)

  • Ashby, M., Evans, A., Fleck, N., Gibson, L., Hutchinson, J., Wadley, H., Delale, F.: Metal foams: a design guide (2000)

  • Atadashi, I.M., Aroua, M.K., Aziz, A.A.: Biodiesel separation and purification: a review. Renew. Energy 36, 437–443 (2011)

  • Atkins, P.F., Scherger, D.A.: Review of Physical-Chemical Methods for Nitrogen Removal From Wastewaters. Elsevier Ltd (1975)

  • Awang Chee, D.N., Ismail, A.F., Aziz, F., Mohamed Amin, M.A., Abdullah, N.: The influence of alumina particle size on the properties and performance of alumina hollow fiber as support membrane for protein separation. Sep. Purif. Technol. 250 (2020). https://doi.org/10.1016/j.seppur.2020.117147

  • Babkin, V.S., Korzhavin, A.A., Bunev, V.A.: Propagation of premixed gaseous explosion flames in porous media. Combust. Flame 87, 182–190 (1991)

  • Badwal, S.P.S., Giddey, S., Munnings, C., Kulkarni, A.: Review of progress in high temperature solid oxide fuel cells. J. Aust. Ceram. Soc. 50, 23–37 (2014)

  • Bakry, A., Al-Salaymeh, A., Al-Muhtaseb, A.H., Abu-Jrai, A., Trimis, D.: Adiabatic premixed combustion in a gaseous fuel porous inert media under high pressure and temperature: novel flame stabilization technique. Fuel 90, 647–658 (2011). https://doi.org/10.1016/j.fuel.2010.09.050

  • Bao, S., Syvertsen, M., Nordmark, A., Kvithyld, A., Engh, T., Tangstad, M.: Plant scale investigation of liquid aluminium filtration by Al2O3 and SiC ceramic foam filters (2016)

  • Bardhan, P.: Ceramic honeycomb filters and catalysts. Curr. Opin. Solid State Mater. Sci. 2, 577–583 (1997). https://doi.org/10.1016/S1359-0286(97)80048-4

  • Bari, M.A., Kindzierski, W.B.: Ambient volatile organic compounds (VOCs) in Calgary, Alberta: sources and screening health risk assessment. Sci. Total Environ. 631, 627–640 (2018)

  • Bavand-Vandchali, M., Sarpoolaky, H., Golestani-Fard, F., Rezaie, H.R.: Atmosphere and carbon effects on microstructure and phase analysis of in situ spinel formation in MgO–C refractories matrix. Ceram. Int. 35, 861–868 (2009)

  • Beall, G.H., Duke, D.A.: Glass-ceramic technology. In: Glass: Science and Technology, p. 404 (1983)

  • Ben, Y., Zhang, L., Wei, S., Zhou, T., Li, Z., Yang, H., Wong, C., Chen, H.: Improved forming performance of β-TCP powders by doping silica for 3D ceramic printing. J. Mater. Sci. Mater. Electron. 28, 5391–5397 (2017)

  • Bensadok, K., Belkacem, M., Nezzal, G.: Treatment of cutting oil/water emulsion by coupling coagulation and dissolved air flotation. Desalination 206, 440–448 (2007)

  • Binner, E.R., Robinson, J.P., Kingman, S.W., Lester, E.H., Azzopardi, B.J., Dimitrakis, G., Briggs, J.: Separation of oil/water emulsions in continuous flow using microwave heating. Energy Fuels 27, 3173–3178 (2013)

  • Bosse, P.W., Challagulla, K.S., Venkatesh, T.A.: Effects of foam shape and porosity aspect ratio on the electromechanical properties of 3–3 piezoelectric foams. Acta Mater. 60, 6464–6475 (2012)

  • Bouma, P.H., De Goey, L.P.H.: Premixed combustion on ceramic foam burners. Combust. Flame 119, 133–143 (1999). https://doi.org/10.1016/S0010-2180(99)00050-4

  • Braga, M.H., Murchison, A.J., Ferreira, J.A., Singh, P., Goodenough, J.B.: Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells. Energy Environ. Sci. 9, 948–954 (2016). https://doi.org/10.1039/c5ee02924d

  • Brenner, G., Pickenäcker, K., Pickenäcker, O., Trimis, D., Wawrzinek, K., Weber, T.: Numerical and experimental investigation of matrix-stabilized methane/air combustion in porous inert media. Combust. Flame 123, 201–213 (2000)

  • Brissot, C., Rosso, M., Chazalviel, J.-N., Lascaud, S.: Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81–82, 925–929 (1999). https://doi.org/10.1016/S0378-7753(98)00242-0

  • Bubnovich, V., Hernandez, H., Toledo, M., Flores, C.: Experimental investigation of flame stability in the premixed propane-air combustion in two-section porous media burner. Fuel. 291 (2021). https://doi.org/10.1016/j.fuel.2020.120117

  • Buzzitta, V.A.J., Hallgren, S.E., Powers, J.M.: Bond strength of orthodontic direct-bonding cement-bracket systems as studied in vitro. Am. J. Orthod. 81, 87–92 (1982)

  • Campanella, D., Belanger, D., Paolella, A.: Beyond garnets, phosphates and phosphosulfides solid electrolytes: new ceramic perspectives for all solid lithium metal batteries. J. Power Sources 482, 228949 (2021). https://doi.org/10.1016/j.jpowsour.2020.228949

  • Cerri, I., Saracco, G., Specchia, V.: Methane combustion over low-emission catalytic foam burners. Catal. Today 60, 21–32 (2000). https://doi.org/10.1016/S0920-5861(00)00313-8

  • Challagulla, K.S., Venkatesh, T.A.: Electromechanical response of piezoelectric foams. Acta Mater. 60, 2111–2127 (2012)

  • Chen, J.H., Liu, P.S., Cheng, W.: PBA-loaded albite-base ceramic foam in application to adsorb harmful ions of Cd, Cs and As(V) in water. Multidiscip. Model. Mater. Struct. 15, 659–672 (2019). https://doi.org/10.1108/MMMS-07-2018-0140

  • Chen, Y., Wang, N., Ola, O., Xia, Y., Zhu, Y.: Porous ceramics: light in weight but heavy in energy and environment technologies. Mater. Sci. Eng. R Rep. 143, 100589 (2021). https://doi.org/10.1016/j.mser.2020.100589

  • Chiara, A., Giannici, F., Pipitone, C., Longo, A., Aliotta, C., Gambino, M., Martorana, A.: Solid–solid interfaces in protonic ceramic devices: a critical review. ACS Appl. Mater. Interfaces (2020)

  • Choi, N.C., Cho, K.H., Kim, M.S., Park, S.J., Lee, C.G.: A hybrid ion-exchange fabric/ceramic membrane system to remove As(V), Zn(II), and turbidity from wastewater. Appl. Sci. 10 (2020). https://doi.org/10.3390/app10072414

  • Choubey, P.K., Kim, M.S., Srivastava, R.R., Lee, J.C., Lee, J.Y.: Advance review on the exploitation of the prominent energy-storage element: lithium. Part I: from mineral and brine resources. Miner. Eng. 89, 119–137 (2016). https://doi.org/10.1016/j.mineng.2016.01.010

  • Contarin, F., Saveliev, A.V., Fridman, A.A., Kennedy, L.A.: A reciprocal flow filtration combustor with embedded heat exchangers: numerical study. Int. J. Heat Mass Transf. 46, 949–961 (2003). https://doi.org/10.1016/S0017-9310(02)00371-X

  • Coors, W.G.: Protonic ceramic fuel cells for high-efficiency operation with methane. J. Power Sources 118, 150–156 (2003)

  • Coquard, R., Rochais, D., Baillis, D.: Conductive and radiative heat transfer in ceramic and metal foams at fire temperatures. Fire Technol. 48, 699–732 (2012). https://doi.org/10.1007/s10694-010-0167-8

  • Curecheriu, L., Lukacs, V.A., Padurariu, L., Stoian, G., Ciomaga, C.E.: Effect of porosity on functional properties of lead-free piezoelectric BaZr0.15Ti0.85O3 porous ceramics. Materials (Basel) 13 (2020). https://doi.org/10.3390/ma13153324

  • Damoah, L.N.W., Zhang, L.: AlF3 reactive Al2O3 foam filter for the removal of dissolved impurities from molten aluminum: preliminary results. Acta Mater. 59, 896–913 (2011). https://doi.org/10.1016/j.actamat.2010.09.064

  • Das, D., Nijhuma, K., Gabriel, A.M., Daniel, G.P.F., Murilo, D.D.M.I.: Recycling of coal fly ash for fabrication of elongated mullite rod bonded porous SiC ceramic membrane and its application in filtration. J. Eur. Ceram. Soc. 40, 2163–2172 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.034

  • De Araujo Scharnberg, A.R., Loreto, A.C.D., Wermuth, T.B., Alves, A.K., Arcaro, S., Santos, P.A.M.D., Rodriguez, A.D.A.L.: Porous ceramic supported TiO2 nanoparticles: enhanced photocatalytic activity for Rhodamine B degradation. Bol. Soc. Esp. Ceram. Vidr. 59, 230–238 (2020). https://doi.org/10.1016/j.bsecv.2019.12.001

  • Demir, A.: Fabrication of alumina ceramic filters and performance tests for aluminium castings. Acta Phys. Pol. A. 134, 332–334 (2018). https://doi.org/10.12693/APhysPolA.134.332

  • Deng, Y., Ansart, R., Baeyens, J., Zhang, H.: Flue gas desulphurization in circulating fluidized beds (2019)

  • Dhanushkodi, S.R., Capitanio, F., Biggs, T., Merida, W.: Understanding flexural, mechanical and physico-chemical properties of gas diffusion layers for polymer membrane fuel cell and electrolyzer systems. Int. J. Hydrogen Energy 40, 16846–16859 (2015)

  • di Bitonto, L., Pastore, C.: Metal hydrated-salts as efficient and reusable catalysts for pre-treating waste cooking oils and animal fats for an effective production of biodiesel. Renew. Energy 143, 1193–1200 (2019)

  • Diana, S., Fauzan, R., Elfiana, E.: Removing Escherichia coli bacteria in river water using ceramic membrane from mixed clay and fly ash material (2019)

  • Diao, Z.-H., Xu, X.-R., Jiang, D., Liu, J.-J., Kong, L.-J., Li, G., Zuo, L.-Z., Wu, Q.-H.: Simultaneous photocatalytic Cr(VI) reduction and ciprofloxacin oxidation over TiO2/Fe0 composite under aerobic conditions: performance, durability, pathway and mechanism. Chem. Eng. J. 315, 167–176 (2017)

  • Do, M.H., Ngo, H.H., Guo, W., Chang, S.W., Nguyen, D.D., Liu, Y., Varjani, S., Kumar, M.: Microbial fuel cell-based biosensor for online monitoring wastewater quality: a critical review. Sci. Total Environ. 712, 135612 (2020)

  • Dogdibegovic, E., Wang, R., Lau, G.Y., Tucker, M.C.: High performance metal-supported solid oxide fuel cells with infiltrated electrodes. J. Power Sources 410–411, 91–98 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.004

  • Dong, H., Li, J., Li, Y., Hu, L., Luo, D.: Improvement of catalytic activity and stability of lipase by immobilization on organobentonite. Chem. Eng. J. 181, 590–596 (2012)

  • Dong, H., Lin, Z., Wan, X., Feng, L.: Risk assessment for the mercury polluted site near a pesticide plant in Changsha, Hunan, China. Chemosphere 169, 333–341 (2017). https://doi.org/10.1016/j.chemosphere.2016.11.084

  • Dong, L., Zhang, H., Zhang, J., Wu, W., Jia, Q.: Carbon nanotube modified sepiolite porous ceramics for high-efficient oil/water separation. Wuji Cailiao Xuebao/J. Inorg. Mater. 35, 689–696 (2020). https://doi.org/10.15541/jim20190382

  • Doreau, F., Chaput, C., Chartier, T.: Stereolithography for ceramic part manufacturing. Ceram. Reliab. Tribol. Wear 12, 69–74 (2000)

  • Douglass, J.B.: Enamel wear caused by ceramic brackets. Am. J. Orthod. Dentofac. Orthop. 95, 96–98 (1989)

  • Drioli, E., Ali, A., Macedonio, F.: Membrane distillation: recent developments and perspectives. Desalination 356, 56–84 (2015)

  • Duan, C., Tong, J., Shang, M., Nikodemski, S., Sanders, M., Ricote, S., Almansoori, A., O’Hayre, R.: Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science (80-) 349, 1321–1326 (2015)

  • Duan, C., Huang, J., Sullivan, N., O’Hayre, R.: Proton-conducting oxides for energy conversion and storage. Appl. Phys. Rev. 7, 11314 (2020)

  • Dyer, P.N., Richards, R.E., Russek, S.L., Taylor, D.M.: Ion transport membrane technology for oxygen separation and syngas production. Solid State Ionics 134, 21–33 (2000)

  • Eckel, Z.C., Zhou, C., Martin, J.H., Jacobsen, A.J., Carter, W.B., Schaedler, T.A.: Additive manufacturing of polymer-derived ceramics. Science (80-) 351, 58–62 (2016)

  • Eliades, T.: Orthodontic materials research and applications: part 2. Current status and projected future developments in materials and biocompatibility. Am. J. Orthod. Dentofac. Orthop. 131, 253–262 (2007)

  • Emmel, M., Aneziris, C.G., Sponza, F., Dudczig, S., Colombo, P.: In situ spinel formation in Al2O3-MgO-C filter materials for steel melt filtration. Ceram. Int. 40, 13507–13513 (2014). https://doi.org/10.1016/j.ceramint.2014.05.033

  • Eterigho-Ikelegbe, O., Bada, S.O., Daramola, M.O.: Preparation and evaluation of nanocomposite sodalite/α-Al2O3 tubular membranes for H2/CO2 separation. Membranes (Basel) 10, 1–18 (2020). https://doi.org/10.3390/membranes10110312

  • Evans, A.G., Hutchinson, J.W., Ashby, M.F.: Cellular metals. Curr. Opin. Solid State Mater. Sci. 3, 288–303 (1998). https://doi.org/10.1016/S1359-0286(98)80105-8

  • Faltermeier, A., Behr, M., Müßig, D.: In vitro colour stability of aesthetic brackets. Eur. J. Orthod. 29, 354–358 (2007)

  • Farrow, C., McBean, E., Huang, G., Yang, A., Wu, Y., Liu, Z., Dai, Z., Fu, H., Cawte, T., Li, Y.: Ceramic water filters: a point-of-use water treatment technology to remove bacteria from drinking water in Longhai City, Fujian Province, China. J. Environ. Inform. 32, 63–68 (2018)

  • Fedotov, A.S., Uvarov, V.I., Tsodikov, M.V., Paul, S., Simon, P., Marinova, M., Dumeignil, F.: Dehydrogenation of cumene to α-methylstyrene on [Re, W]/γ-Al2O3(K, Ce)/α-Al2O3 and [Fe, Cr]/γ-Al2O3(K, Ce)/α-Al2O3 porous ceramic catalytic converters. Pet. Chem. 60, 1268–1283 (2020). https://doi.org/10.1134/S0965544120110080

  • Fedotov, A.S., Uvarov, V.I., Tsodikov, M.V, Paul, S., Simon, P., Marinova, M., Dumeignil, F.: Production of styrene by dehydrogenation of ethylbenzene on a [Re, W]/γ-Al2O3 (K, Ce)/α-Al2O3 porous ceramic catalytic converter. Chem. Eng. Process. Process Intensif. 160 (2021). https://doi.org/10.1016/j.cep.2020.108265

  • Feldner, J.C., Sarkar, N.K., Sheridan, J.J., Lancaster, D.M.: In vitro torque-deformation characteristics of orthodontic polycarbonate brackets. Am. J. Orthod. Dentofac. Orthop. 106, 265–272 (1994)

  • Feng, S., Liu, J., Gao, B., Bo, L., Cao, L.: The filtration and degradation mechanism of toluene via microwave thermo-catalysis ceramic membrane. J. Environ. Chem. Eng. 9 (2021). https://doi.org/10.1016/j.jece.2021.105105

  • Fisher, J.B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M.F., Hook, S., Baldocchi, D., Townsend, P.A.: The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017)

  • Fonseca, J.M., Teleken, J.G., de Cinque Almeida, V., da Silva, C.: Biodiesel from waste frying oils: methods of production and purification. Energy Convers. Manag. 184, 205–218 (2019)

  • Fraga, M.C., Sanches, S., Crespo, J.G., Pereira, V.J.: Assessment of a new silicon carbide tubular honeycomb membrane for treatment of olive mill wastewaters. Membranes (Basel) 7, 12 (2017a)

  • Fraga, M.C., Sanches, S., Pereira, V.J., Crespo, J.G., Yuan, L., Marcher, J., de Yuso, M.M., Rodríguez-Castellón, E., Benavente, J.: Morphological, chemical surface and filtration characterization of a new silicon carbide membrane. J. Eur. Ceram. Soc. 37, 899–905 (2017b)

  • Fu, J.: Fast Li+ ion conducting glass-ceramics in the system Li2O–Al2O3–GeO2–P2O5. Solid State Ionics 104, 191–194 (1997a). https://doi.org/10.1016/S0167-2738(97)00434-7

  • Fu, J.: Superionic conductivity of glass-ceramics in the system Li2O–Al2O3–TiO2–P2O5. Solid State Ionics 96, 195–200 (1997b). https://doi.org/10.1016/S0167-2738(97)00018-0

  • Gajda, I., Obata, O., Salar-Garcia, M.J., Greenman, J., Ieropoulos, I.A.: Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations. Bioelectrochemistry 133, 107459 (2020)

  • Gallimberti, I.: Recent advancements in the physical modelling of electrostatic precipitators. J. Electrostat. 43, 219–247 (1998)

  • Gallon, V., Le Cann, P., Sanchez, M., Dematteo, C., Le Bot, B.: Emissions of VOCs, SVOCs, and mold during the construction process: contribution to indoor air quality and future occupants’ exposure. Indoor Air 30, 691–710 (2020)

  • Gao, H.B., Qu, Z.G., Feng, X.B., Tao, W.Q.: Methane/air premixed combustion in a two-layer porous burner with different foam materials. Fuel 115, 154–161 (2014)

  • Gao, N., Li, J., Quan, C., Wang, X., Yang, Y.: Oily sludge catalytic pyrolysis combined with fine particle removal using a Ni-ceramic membrane. Fuel 277 (2020). https://doi.org/10.1016/j.fuel.2020.118134

  • Gardea-Torresdey, J.L., Tiemann, K.J., Armendariz, V., Bess-Oberto, L., Chianelli, R.R., Rios, J., Parsons, J.G., Gamez, G.: Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural byproducts of Avena monida (Oat) biomass. J. Hazard. Mater. 80, 175–188 (2000). https://doi.org/10.1016/S0304-3894(00)00301-0

  • Gauthier, S., Nicolle, A., Baillis, D.: Investigation of the flame structure and nitrogen oxides formation in lean porous premixed combustion of natural gas/hydrogen blends. Int. J. Hydrogen Energy 33, 4893–4905 (2008). https://doi.org/10.1016/j.ijhydene.2008.06.012

  • Gehre, P., Schmidt, A., Dudczig, S., Hubálková, J., Aneziris, C.G., Child, N., Delaney, I., Rancoule, G., DeBastiani, D.: Interaction of slip- and flame-spray coated carbon-bonded alumina filters with steel melts. J. Am. Ceram. Soc. 101, 3222–3233 (2018). https://doi.org/10.1111/jace.15431

  • German, R.M., Suri, P., Park, S.J.: Review: liquid phase sintering. J. Mater. Sci. 44, 1–39 (2009). https://doi.org/10.1007/s10853-008-3008-0

  • Göhring, T.N., Gallo, L., Lüthy, H.: Effect of water storage, thermocycling, the incorporation and site of placement of glass-fibers on the flexural strength of veneering composite. Dent. Mater. 21, 761–772 (2005)

  • Gorner, H., Engh, T.A., Syvertsen, M.: Light Metals 2006, p. 756. Warrendale TMS (2006)

  • Han, N., Wei, Q., Zhang, S., Yang, N., Liu, S.: Rational design via tailoring Mo content in La2Ni1-xMoxO4+δ to improve oxygen permeation properties in CO2 atmosphere. J. Alloys Compd. 806, 153–162 (2019). https://doi.org/10.1016/j.jallcom.2019.07.209

  • Hashemi, S.A., Alsulaiei, Z.M.A., Mollamahdi, M.: Experimental analysis of the effects of porous wall on flame stability and temperature distribution in a premixed natural gas/air combustion. Heat Transf. 49, 2282–2296 (2020). https://doi.org/10.1002/htj.21720

  • He, X., Su, B., Tang, Z., Zhao, B., Wang, X., Yang, G., Qiu, H., Zhang, H., Yang, J.: The comparison of macroporous ceramics fabricated through the protein direct foaming and sponge replica methods. J. Porous Mater. 19, 761–766 (2012). https://doi.org/10.1007/s10934-011-9528-z

  • Hillel, D.: Introduction to Soil Physics. Academic Press (2013)

  • Hoffmann, J.G., Echigo, R., Yoshida, H., Tada, S.: Experimental study on combustion in porous media with a reciprocating flow system. Combust. Flame 111, 32–46 (1997). https://doi.org/10.1016/S0010-2180(97)00099-0

  • Hofs, B., Ogier, J., Vries, D., Beerendonk, E.F., Cornelissen, E.R.: Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Sep. Purif. Technol. 79, 365–374 (2011)

  • Hoppach, D., Werzner, E., Demuth, C., Löwer, E., Lehmann, H., Ditscherlein, L., Ditscherlein, R., Peuker, U.A., Ray, S.: Experimental investigations of the depth filtration inside open-cell foam filters supported by high-resolution computed tomography scanning and pore-scale numerical simulations. Adv. Eng. Mater. 22 (2020). https://doi.org/10.1002/adem.201900761

  • Howell, J.R., Hall, M.J., Ellzey, J.L.: Combustion of hydrocarbon fuels within porous inert media. Prog. Energy Combust. Sci. 22, 121–145 (1996). https://doi.org/10.1016/0360-1285(96)00001-9

  • Hsieh, H.P., Bhave, R.R., Fleming, H.L.: Microporous alumina membranes. J. Memb. Sci. 39, 221–241 (1988)

  • Huang, J., Huang, G., An, C., He, Y., Yao, Y., Zhang, P., Shen, J.: Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions. Environ. Pollut. 238, 52–62 (2018)

  • Hubadillah, S.K., Othman, M.H.D., Rahman, M.A., Ismail, A.F., Jaafar, J.: Preparation and characterization of inexpensive kaolin hollow fibre membrane (KHFM) prepared using phase inversion/sintering technique for the efficient separation of real oily wastewater. Arab. J. Chem. 13, 2349–2367 (2020). https://doi.org/10.1016/j.arabjc.2018.04.018

  • Huo, C., Tian, X., Chen, C., Zhang, J., Nan, Y., Zhong, Q., Huang, X., Hu, J., Li, D.: Hierarchically porous alumina catalyst carrier with biomimetic vein structure prepared by direct ink writing. J. Eur. Ceram. Soc. 41, 4231–4241 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.02.016

  • Hwa, L.C., Rajoo, S., Noor, A.M., Ahmad, N., Uday, M.B.: Recent advances in 3D printing of porous ceramics: a review. Curr. Opin. Solid State Mater. Sci. 21, 323–347 (2017)

  • Inaguma, Y., Liquan, C., Itoh, M., Nakamura, T., Uchida, T., Ikuta, H., Wakihara, M.: High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993). https://doi.org/10.1016/0038-1098(93)90841-A

  • Iwahara, H.: Proton conducting ceramics and their applications. Solid State Ionics 86, 9–15 (1996)

  • Jayakumar, A., Singamneni, S., Ramos, M., Al-Jumaily, A.M., Pethaiah, S.S.: Manufacturing the gas diffusion layer for PEM fuel cell using a novel 3D printing technique and critical assessment of the challenges encountered. Materials (Basel) 10, 796 (2017)

  • Jena, A.K., Duggal, R., Mehrotra, A.K.: Physical properties and clinical characteristics of ceramic brackets: a comprehensive review. Trends Biomater. Artif. Organs 20, 101–115 (2007)

  • Jiang, Q.Y., Cross, L.E.: Effects of porosity on electric fatigue behaviour in PLZT and PZT ferroelectric ceramics. J. Mater. Sci. 28, 4536–4543 (1993)

  • Judkins, R.R., Stinton, D.P., DeVan, J.H.: A review of the efficacy of silicon carbide hot-gas filters in coal gasification and pressurized fluidized bed combustion environments (1996)

  • Kamarudin, N.H., Harun, Z., Othman, M.H.D., Abdullahi, T., Syamsul Bahri, S., Kamarudin, N.H., Yunos, M.Z., Wan Salleh, W.N.: Waste environmental sources of metakaolin and corn cob ash for preparation and characterisation of green ceramic hollow fibre membrane (h-MCa) for oil-water separation. Ceram. Int. 46, 1512–1525 (2020). https://doi.org/10.1016/j.ceramint.2019.09.118

  • Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011)

  • Karamouzos, A., Athanasiou, A.E., Papadopoulos, M.A.: Clinical characteristics and properties of ceramic brackets: a comprehensive review. Am. J. Orthod. Dentofac. Orthop. 112, 34–40 (1997)

  • Karges, U., Becker, J., Püttmann, W.: 1, 4-dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume. Sci. Total Environ. 619, 712–720 (2018)

  • Kerry, F.G.: Industrial Gas Handbook: Gas Separation and Purification. CRC Press (2007)

  • Khachaturyan, R., Zhukov, S., Schultheiß, J., Galassi, C., Reimuth, C., Koruza, J., Von Seggern, H., Genenko, Y.A.: Polarization-switching dynamics in bulk ferroelectrics with isometric and oriented anisometric pores. J. Phys. D Appl. Phys. 50, 45303 (2016)

  • Khanna, R., Kongkarat, S., Seetharaman, S., Sahajwalla, V.: Carbothermic reduction of alumina at 1823 K in the presence of molten steel: a sessile drop investigation. ISIJ Int. 52, 992–999 (2012)

  • Khayet, M.: Membranes and theoretical modeling of membrane distillation: a review. Adv. Colloid Interface Sci. 164, 56–88 (2011)

  • Kim, J., Sengodan, S., Kim, S., Kwon, O., Bu, Y., Kim, G.: Proton conducting oxides: a review of materials and applications for renewable energy conversion and storage. Renew. Sustain. Energy Rev. 109, 606–618 (2019). https://doi.org/10.1016/j.rser.2019.04.042

  • Koros, W.J., Mahajan, R.: Pushing the limits on possibilities for large scale gas separation: which strategies? J. Memb. Sci. 175, 181–196 (2000)

  • Koros, W.J., Ma, Y.H., Shimidzu, T.: Terminology for membranes and membrane processes (IUPAC Recommendations 1996). Pure Appl. Chem. 68, 1479–1489 (1996). https://doi.org/10.1351/pac199668071479

  • Kouvelos, E., Kesore, K., Steriotis, T., Grigoropoulou, H., Bouloubasi, D., Theophilou, N., Tzintzos, S., Kanelopoulos, N.: High pressure N2/CH4 adsorption measurements in clinoptilolites. Microporous Mesoporous Mater. 99, 106–111 (2007). https://doi.org/10.1016/j.micromeso.2006.07.036

  • Krivoshapkina, E.F., Vedyagin, A.A., Krivoshapkin, P.V., Desyatykh, I.V.: Carbon monoxide oxidation over microfiltration ceramic membranes. Pet. Chem. 55, 901–908 (2015). https://doi.org/10.1134/S0965544115100096

  • Kulbakin, I.V., Fedorov, S.V.: Promising NiO–30 wt % Ag–40 wt % Bi2O3 membrane material for separation of oxygen from air. Inorg. Mater. Appl. Res. 9, 868–872 (2018). https://doi.org/10.1134/S2075113318050180

  • Labhsetwar, N., Doggali, P., Rayalu, S., Yadav, R., Mistuhashi, T., Haneda, H.: Ceramics in environmental catalysis: applications and possibilities. Chin. J. Catal. 33, 1611–1621 (2012). https://doi.org/10.1016/S1872-2067(11)60440-3

  • Ledoux, M.J., Hantzer, S., Huu, C.P., Guille, J., Desaneaux, M.-P.: New synthesis and uses of high-specific-surface SiC as a catalytic support that is chemically inert and has high thermal resistance. J. Catal. 114, 176–185 (1988)

  • Lei, L., Zhang, J., Yuan, Z., Liu, J., Ni, M., Chen, F.: Progress report on proton conducting solid oxide electrolysis cells. Adv. Funct. Mater. 29, 1903805 (2019)

  • Li, K.: Ceramic Membranes for Separation and Reaction. Wiley (2007)

  • Li, W., Dahn, J.R., Wainwright, D.S.: Rechargeable lithium batteries with aqueous electrolytes. Science (80-) 264 1115–1118 (1994)

  • Li, B., Li, G., Chen, J., Chen, H., Xing, X., Hou, X., Li, Y.: Formation mechanism of elongated β–Si3N4 crystals in Fe–Si3N4 composite via flash combustion. Ceram. Int. 44, 9395–9400 (2018a)

  • Li, S., Duan, W., Zhao, T., Han, W., Wang, L., Dou, R., Wang, G.: The fabrication of SiBCN ceramic components from preceramic polymers by digital light processing (DLP) 3D printing technology. J. Eur. Ceram. Soc. 38, 4597–4603 (2018b)

  • Li, J., Wu, M., Du, H., Wang, B., Li, Y., Huan, W.: Highly effective catalytic reduction of nitrobenzene compounds with gold nanoparticle-immobilized hydroxyapatite nanowire-sintered porous ceramic beads. New J. Chem. 45, 4601–4610 (2021a). https://doi.org/10.1039/d0nj06209j

  • Li, S., Baeyens, J., Dewil, R., Appels, L., Zhang, H., Deng, Y.: Advances in rigid porous high temperature filters. Renew. Sustain. Energy Rev. 139 (2021b). https://doi.org/10.1016/j.rser.2021.110713

  • Liu, L., Chen, F., Yang, F., Chen, Y., Crittenden, J.: Photocatalytic degradation of 2, 4-dichlorophenol using nanoscale Fe/TiO2. Chem. Eng. J. 181, 189–195 (2012)

  • Liu, D., Zhu, W., Trottier, J., Gagnon, C., Barray, F., Guerfi, A., Mauger, A., Groult, H., Julien, C.M., Goodenough, J.B.: Spinel materials for high-voltage cathodes in Li-ion batteries. RSC Adv. 4, 154–167 (2014)

  • Liu, Y., Zhu, W., Guan, K., Peng, C., Wu, J.: Preparation of high permeable alumina ceramic membrane with good separation performance: via UV curing technique. RSC Adv. 8, 13567–13577 (2018). https://doi.org/10.1039/c7ra13195j

  • Liu, J., Zhang, Y., Hong, Z., Liu, H., Wang, S., Gu, X.: Fabrication of dual-layer hollow fiber ceramic composite membranes by Co-extrusion. Wuji Cailiao Xuebao/J. Inorg. Mater. 35, 1333–1339 (2020). https://doi.org/10.15541/jim20200182

  • Liu, Y., Song, Z., Wang, W., Wang, Z., Zhang, Y., Liu, C., Wang, Y., Li, A., Xu, B., Qi, F.: A CuMn2O4/g-C3N4 catalytic ozonation membrane reactor used for water purification: membrane fabrication and performance evaluation. Sep. Purif. Technol. 265 (2021). https://doi.org/10.1016/j.seppur.2020.118268

    If you want to learn more, please visit our website NFJ.

  • Løken, A., Ricote, S., Wachowski, S.: Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes. Crystals 8 (2018). https://doi.org/10.3390/cryst8090365

  • Lu, T.J., Chen, C.: Thermal transport and fire retardance properties of cellular aluminium alloys. Acta Mater. 47, 1469–1485 (1999). https://doi.org/10.1016/S1359-6454(99)00037-3

  • Lu, T.J., Stone, H.A., Ashby, M.F.: Heat transfer in open-cell metal foams. Acta Mater. 46, 3619–3635 (1998). https://doi.org/10.1016/S1359-6454(98)00031-7

  • Lu, T.J., Hess, A., Ashby, M.F.: Sound absorption in metallic foams. J. Appl. Phys. 85, 7528–7539 (1999). https://doi.org/10.1063/1.370550

  • Malerød-Fjeld, H., Clark, D., Yuste-Tirados, I., Zanón, R., Catalán-Martinez, D., Beeaff, D., Morejudo, S.H., Vestre, P.K., Norby, T., Haugsrud, R.: Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nat. Energy 2, 923–931 (2017)

  • Mao, J., Quan, X., Wang, J., Gao, C., Chen, S., Yu, H., Zhang, Y.: Enhanced heterogeneous Fenton-like activity by Cu-doped BiFeO3 perovskite for degradation of organic pollutants. Front. Environ. Sci. Eng. 12, 1–10 (2018)

  • Marnellos, G., Stoukides, M.: Ammonia synthesis at atmospheric pressure. Science (80-) 282, 98–100 (1998)

  • Mazzoni, A.D., Sainz, M.A., Caballero, A., Aglietti, E.F.: Formation and sintering of spinels (MgAl2O4) in reducing atmospheres. Mater. Chem. Phys. 78, 30–37 (2003)

  • McElroy, A.C., Hyman, M.R., Knappe, D.R.U.: 1, 4-Dioxane in drinking water: emerging for 40 years and still unregulated. Curr. Opin. Environ. Sci. Health 7, 117–125 (2019)

  • Medvedev, D.: Trends in research and development of protonic ceramic electrolysis cells. Int. J. Hydrogen Energy 44, 26711–26740 (2019)

  • Meguro, D., Hayakawa, T., Kawasaki, M., Kasai, K.: Shear bond strength of calcium phosphate ceramic brackets to human enamel. Angle Orthod. 76, 301–305 (2006)

  • Mei, H., Huang, W., Zhao, Y., Cheng, L.: Strengthening three-dimensional printed ultra-light ceramic lattices. J. Am. Ceram. Soc. 102, 5082–5089 (2019)

  • Mei, H., Tan, Y., Huang, W., Chang, P., Fan, Y., Cheng, L.: Structure design influencing the mechanical performance of 3D printing porous ceramics. Ceram. Int. 47, 8389–8397 (2021). https://doi.org/10.1016/j.ceramint.2020.11.203

  • Miretzky, P., Cirelli, A.F.: Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review (2010)

  • Misyura, S.Y.: The influence of porosity and structural parameters on different kinds of gas hydrate dissociation. Sci. Rep. 6, 30324 (2016). https://doi.org/10.1038/srep30324

  • Mkandawire, T., Banda, E.: Assessment of drinking water quality of Mtopwa village in Bangwe Township, Blantyre. Desalination 248, 557–561 (2009)

  • Mohr, T.K.G., DiGuiseppi, W.H., Hatton, J.W., Anderson, J.K.: Environmental Investigation and Remediation: 1, 4-Dioxane and Other Solvent Stabilizers. CRC Press (2020)

  • Molenda, J., Kupecki, J., Baron, R., Blesznowski, M., Brus, G., Brylewski, T., Bucko, M., Chmielowiec, J., Cwieka, K., Gazda, M.: Status report on high temperature fuel cells in Poland—recent advances and achievements. Int. J. Hydrogen Energy 42, 4366–4403 (2017)

  • Moni, P., Deschamps, A., Schumacher, D., Rezwan, K., Wilhelm, M.: A new silicon oxycarbide based gas diffusion layer for zinc-air batteries. J. Colloid Interface Sci. 577, 494–502 (2020). https://doi.org/10.1016/j.jcis.2020.05.041

  • Moreira, W.M., da Igreja, G., Viotti, P. V, Baptista, C.M.S.G., Gimenes, M.L., Gomes, M.C.S., Pereira, N.C.: Soybean biodiesel purification through an acid-system membrane technology: effect of oil quality and separation process parameters. J. Chem. Technol. Biotechnol. 95, 1962–1969 (2020). https://doi.org/10.1002/jctb.6395

  • Morejudo, S.H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P.K., Coors, W.G., Martínez, A., Norby, T., Serra, J.M.: Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science (80-) 353, 563–566 (2016)

  • Murphy, H.M., McBean, E.A., Farahbakhsh, K.: A critical evaluation of two point-of-use water treatment technologies: can they provide water that meets WHO drinking water guidelines? J. Water Health 8, 611–630 (2010)

  • Murugan, R., Thangadurai, V., Weppner, W.: Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007). https://doi.org/10.1002/anie.200701144

  • Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., Hui, D.: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng. 143, 172–196 (2018)

  • Norby, T.: Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ionics 125, 1–11 (1999)

  • Obada, D.O., Dodoo-Arhin, D., Dauda, M., Anafi, F.O., Ahmed, A.S., Ajayi, O.A.: Pressureless sintering and gas flux properties of porous ceramic membranes for gas applications. Results Phys. 7, 3838–3846 (2017). https://doi.org/10.1016/j.rinp.2017.10.002

  • Ohji, T., Fukushima, M.: Macro-porous ceramics: processing and properties. Int. Mater. Rev. 57, 115–131 (2012). https://doi.org/10.1179/1743280411Y.0000000006

  • Omrani, R., Shabani, B.: Gas diffusion layers in fuel cells and electrolysers: a novel semi-empirical model to predict electrical conductivity of sintered metal fibres. Energies 12, 855 (2019)

  • Ortiz-Vitoriano, N., Drewett, N.E., Gonzalo, E., Rojo, T.: High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ. Sci. 10, 1051–1074 (2017)

  • Ounissi, T., Dammak, L., Larchet, C., Fauvarque, J.-F., Selmane Bel Hadj Hmida, E.: Novel lithium selective composite membranes: synthesis, characterization and validation tests in dialysis. J. Mater. Sci. 55, 16111–16128 (2020). https://doi.org/10.1007/s10853-020-05147-8

  • Owen, D., Hickey, J., Cusson, A., Ayeni, O.I., Rhoades, J., Deng, Y., Zhang, Y., Wu, L., Park, H.-Y., Hawaldar, N.: 3D printing of ceramic components using a customized 3D ceramic printer. Prog. Addit. Manuf. 3, 3–9 (2018)

  • Ozden, A., Alaefour, I.E., Shahgaldi, S., Li, X., Colpan, C.O., Hamdullahpur, F.: Gas Diffusion Layers for PEM Fuel Cells: Ex- and In-Situ Characterization. Elsevier (2018)

  • Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O’Shea, K.: A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 125, 331–349 (2012)

  • Peng, S., Chen, Y., Jin, X., Lu, W., Gou, M., Wei, X., Xie, J.: Polyimide with half encapsulated silver nanoparticles grafted ceramic composite membrane: enhanced silver stability and lasting anti‒biofouling performance. J. Memb. Sci. 611 (2020). https://doi.org/10.1016/j.memsci.2020.118340

  • Phair, J.W., Badwal, S.P.S.: Review of proton conductors for hydrogen separation. Ionics (Kiel) 12, 103–115 (2006)

  • Pilicita, V., Páez Fajardo, G.J., Ormaza, R., Piper, L.F.J., Silva-Yumi, J.: Filter design for arsenic species in aqueous environments: An ab initio optimization of the absorbing capacity of magnetite-based arsenic filters. Mater. Lett. 295, 129794 (2021). https://doi.org/10.1016/j.matlet.2021.129794

  • Qin, H., Li, Y., Nie, X., Yan, M., Jiang, P., Xue, W.: Combined effect of Fe-Si alloys and carbon on Si3N4 stability at elevated temperatures. Ceram. Int. 45, 3290–3296 (2019)

  • Raji, Y.O., Othman, M.H.D., Nordin, N.A.H.S.M., ShengTai, Z., Usman, J., Mamah, S.C., Ismail, A.F., Rahman, M.A., Jaafar, J.: Fabrication of magnesium bentonite hollow fibre ceramic membrane for oil-water separation. Arab. J. Chem. 13, 5996–6008 (2020). https://doi.org/10.1016/j.arabjc.2020.05.001

  • Rashad, A.M.: Lightweight expanded clay aggregate as a building material—an overview (2018)

  • Rehman, Z.U., Khan, S., Brusseau, M.L., Shah, M.T.: Lead and cadmium contamination and exposure risk assessment via consumption of vegetables grown in agricultural soils of five-selected regions of Pakistan. Chemosphere 168, 1589–1596 (2017). https://doi.org/10.1016/j.chemosphere.2016.11.152

  • Rodríguez, J., Mais, L., Campana, R., Piroddi, L., Mascia, M., Gurauskis, J., Vacca, A., Palmas, S.: Comprehensive characterization of a cost-effective microbial fuel cell with Pt-free catalyst cathode and slip-casted ceramic membrane. Int. J. Hydrogen Energy (2021). https://doi.org/10.1016/j.ijhydene.2021.01.066

  • Romero, A.R., Elsayed, H., Bernardo, E.: Highly porous cordierite ceramics from engineered basic activation of metakaolin/talc aqueous suspensions. J. Eur. Ceram. Soc. 40, 6254–6258 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.06.072

  • Saifuddin, S., Lisa, A., Amalia, Z., Faridah, F., Elfiana, E.: Applications of micro size anorganic membrane of clay, zeolite and active carbon as filters for peat water purification (2020)

  • Sainz, M.A., Mazzoni, A.D., Aglietti, E.F., Caballero, A.: Thermochemical stability of spinel (MgO·Al2O3) under strong reducing conditions. Mater. Chem. Phys. 86, 399–408 (2004)

  • Sakai, T., Matsushita, S., Matsumoto, H., Okada, S., Hashimoto, S., Ishihara, T.: Intermediate temperature steam electrolysis using strontium zirconate-based protonic conductors. Int. J. Hydrogen Energy 34, 56–63 (2009)

  • Saleem, M., Krammer, G.: Optical in-situ measurement of filter cake height during bag filter plant operation. Powder Technol. 173, 93–106 (2007)

  • Sarin, V., Pant, K.K.: Removal of chromium from industrial waste by using eucalyptus bark. Bioresour. Technol. 97, 15–20 (2006). https://doi.org/10.1016/j.biortech.2005.02.010

  • Schweiss, R., Meiser, C., Damjanovic, T., Galbiati, I., Haak, N.: SIGRACET gas diffusion layers for PEM fuel cells, electrolyzers and batteries. White Pap. SGL Gr. (2016)

  • SenGupta, A.K.: Ion Exchange in Environmental Processes: Fundamentals, Applications and Sustainable Technology. Wiley (2017)

  • Shi, P., Wang, Q., Xu, Y., Luo, W.: Corrosion behavior of bulk nanocrystalline copper in ammonia solution. Mater. Lett. 65, 857–859 (2011). https://doi.org/10.1016/j.matlet.2010.12.014

  • Shi, Y., Matsunaga, T., Yamaguchi, Y., Li, Z., Gu, X., Chen, X.: Long-term trends and spatial patterns of satellite-retrieved PM2.5 concentrations in South and Southeast Asia from 1999 to 2014. Sci. Total Environ. 615, 177–186 (2018)

  • Shuit, S.H., Ong, Y.T., Lee, K.T., Subhash, B., Tan, S.H.: Membrane technology as a promising alternative in biodiesel production: a review. Biotechnol. Adv. 30, 1364–1380 (2012)

  • Snyder, J.F., Carter, R.H., Wetzel, E.D.: Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries. Chem. Mater. 19, 3793–3801 (2007)

  • Solovieva, A.A., Kulbakin, I.V.: The obtaining and properties of asymmetric ion transport membrane for separating of oxygen from air. IOP Conf. Ser. Mater. Sci. Eng. (2018)

  • Song, X., Jian, B., Jin, J.: Preparation of porous ceramic membrane for gas-solid separation. Ceram. Int. 44, 20361–20366 (2018). https://doi.org/10.1016/j.ceramint.2018.08.026

  • Souhaimi, M.K., Matsuura, T.: Membrane Distillation: Principles and Applications (2011)

  • Stack, L.J., Carney, P.A., Malone, H.B., Wessels, T.K.: Factors influencing the ultrasonic separation of oil-in-water emulsions. Ultrason. Sonochem. 12, 153–160 (2005)

  • Statistics, O.T.S.: The International Tanker Owners Pollution Federation (2010)

  • Subramanian, N., Qamar, A., Alsaadi, A., Gallo, A., Jr., Ridwan, M.G., Lee, J.-G., Pillai, S., Arunachalam, S., Anjum, D., Sharipov, F., Ghaffour, N., Mishra, H.: Evaluating the potential of superhydrophobic nanoporous alumina membranes for direct contact membrane distillation. J. Colloid Interface Sci. 533, 723–732 (2019). https://doi.org/10.1016/j.jcis.2018.08.054

  • Sun, M., Lopez-Velandia, C., Knappe, D.R.U.: Determination of 1, 4-dioxane in the Cape Fear River watershed by heated purge-and-trap preconcentration and gas chromatography–mass spectrometry. Environ. Sci. Technol. 50, 2246–2254 (2016)

  • Szul, M., Iluk, T., Sobolewski, A.: High-temperature, dry scrubbing of syngas with use of mineral sorbents and ceramic rigid filters (2020)

  • Tao, Z., Yan, L., Qiao, J., Wang, B., Zhang, L., Zhang, J.: A review of advanced proton-conducting materials for hydrogen separation. Prog. Mater. Sci. 74, 1–50 (2015)

  • Taslicukur, Z., Balaban, C., Kuskonmaz, N.: Production of ceramic foam filters for molten metal filtration using expanded polystyrene. J. Eur. Ceram. Soc. 27, 637–640 (2007)

  • Terada, N., Yanagi, T., Arai, S., Yoshikawa, M., Ohta, K., Nakajima, N., Yanai, A., Arai, N.: Development of lithium batteries for energy storage and EV applications. J. Power Sources 100, 80–92 (2001)

  • Thi Thuy, P., Viet Anh, N., Van der Bruggen, B.: Low-cost technologies for safe drinking water in South-East Asia: overview and application to the north of Vietnam. Environ. Eng. Manag. J. 12 (2013)

  • Thompson, H.S.: On the absorbent power of soils. J. R. Agric. Soc. Engl. 11, 68–74 (1850)

  • Tian, G.-P., Wu, Q.-Y., Li, A., Wang, W.-L., Hu, H.-Y.: Promoted ozonation for the decomposition of 1, 4-dioxane by activated carbon. Water Sci. Technol. Water Supply 17, 613–620 (2017)

  • Trimis, D.: Stabilized combustion in porous media—applications of the porous burner technology in energy- and heat-engineering. In: Fluids 2000 Conference and Exhibit, p. 2298 (2000)

  • Trimis, D., Durst, F.: Combustion in a porous medium-advances and applications. Combust. Sci. Technol. 121, 153–168 (1996)

  • Tripathi, H.S., Ghosh, A.: Spinelisation and properties of Al2O3–MgAl2O4–C refractory: effect of MgO and Al2O3 reactants. Ceram. Int. 36, 1189–1192 (2010)

  • U.S. Geological Survey: Mineral Commodity Summaries 2019 (2019)

  • USEPA: Federal register. In: Federal Register, pp. 6976–7066 (2001)

  • Varanasi, L., Coscarelli, E., Khaksari, M., Mazzoleni, L.R., Minakata, D.: Transformations of dissolved organic matter induced by UV photolysis, hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-based advanced oxidation processes. Water Res. 135, 22–30 (2018)

  • Vo, T.S., Hossain, M.M., Jeong, H.M., Kim, K.: Heavy metal removal applications using adsorptive membranes. Nano Converg. 7 (2020). https://doi.org/10.1186/s40580-020-00245-4

  • Wang, P., Chung, T.-S.: Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. J. Memb. Sci. 474, 39–56 (2015)

  • Wang, X.-L., Zhang, Y.-T., Gao, B., Zhang, C., Gu, X.-H.: Preparation and characterization of NaA zeolite membranes on inner-surface of four-channel ceramic hollow fibers. Wuji Cailiao Xuebao/J. Inorg. Mater. 33, 339–344 (2018). https://doi.org/10.15541/jim20170174

  • Wang, S., Tian, J., Jia, L., Jia, J., Shan, S., Wang, Q., Cui, F.: Removal of aqueous organic contaminants using submerged ceramic hollow fiber membrane coupled with peroxymonosulfate oxidation: comparison of CuO catalyst dispersed in the feed water and immobilized on the membrane. J. Memb. Sci. 618 (2021). https://doi.org/10.1016/j.memsci.2020.118707

  • Way, J.T.: On the power of soils to absorb manure (1850)

  • Wei, G.C.: Method for forming fibrous silicon carbide insulating material (1984)

  • Wei, S., Zeng, C., Lu, Y., Liu, G., Luo, H., Zhang, R.: Degradation of antipyrine in the Fenton-like process with a La-doped heterogeneous catalyst. Front. Environ. Sci. Eng. 13, 1–11 (2019)

  • Wu, Z., Hou, Y., Li, X., Li, Y., Cao, H.: Pilot study on catalyzed oxidation-ceramic membrane-high pressure reverse osmosis for desulfurization wastewater recovery (2021)

  • Xu, Y.: Ferroelectric Materials and Their Applications. Elsevier (2013)

  • Xue, S., Sun, S., Qing, W., Huang, T., Liu, W., Liu, C., Yao, H., Zhang, W.: Experimental and computational assessment of 1,4-dioxane degradation in a photo-Fenton reactive ceramic membrane filtration process. Front. Environ. Sci. Eng. 15 (2021). https://doi.org/10.1007/s11783-020-1341-y

  • Yaroslavtsev, A.B.: Solid electrolytes: main prospects of research and development. Russ. Chem. Rev. 85, 1255 (2016)

  • Yin, Q., Zhu, B., Zeng, H.: Microstructure, Property and Processing of Functional Ceramics. Springer Science & Business Media (2010)

  • Yuan, Y., Li, Z., Cao, L., Tang, B., Zhang, S.: Modification of Si3N4 ceramic powders and fabrication of Si3N4/PTFE composite substrate with high thermal conductivity. Ceram. Int. 45, 16569–16576 (2019)

  • Yuan, L., Jin, E., Li, C., Liu, Z., Tian, C., Ma, B., Yu, J.: Preparation of calcium hexaluminate porous ceramics by novel pectin based gelcasting freeze-drying method. Ceram. Int. 47, 9017–9023 (2021). https://doi.org/10.1016/j.ceramint.2020.12.024

  • Yue, X., Zhang, T., Yang, D., Qiu, F.: Fabrication of flexible ceramic membranes derived from hard Si3N4 and soft MnO2 nanowires. Ceram. Int. 46, 8478–8482 (2020). https://doi.org/10.1016/j.ceramint.2019.11.226

  • Zagoruiko, A.N., Mokrinskii, V.V., Veniaminov, S.A., Noskov, A.S.: On the performance stability of the MnOx/Al2O3 catalyst for VOC incineration under forced adsorption-catalytic cycling conditions. J. Environ. Chem. Eng. 5, 5850–5856 (2017)

  • Zeuner, M., Pagano, S., Schnick, W.: Nitridosilicates and oxonitridosilicates: from ceramic materials to structural and functional diversity. Angew. Chem. Int. Ed. 50, 7754–7775 (2011)

  • Zhang, J.-F., Zheng, Y.-M., Sun, Z.-Q., Hou, L.-M.: Study on effect disciplines of porous materials on gas explosion propagation. Dongbei Daxue Xuebao/J. Northeast. Univ. 34, 290–293 (2013)

  • Zhang, T., Kong, L., Dai, Y., Yue, X., Rong, J., Qiu, F., Pan, J.: Enhanced oils and organic solvents absorption by polyurethane foams composites modified with MnO2 nanowires. Chem. Eng. J. 309, 7–14 (2017)

  • Zhao, Y., Huang, G., An, C., Huang, J., Xin, X., Chen, X., Hong, Y., Song, P.: Removal of Escherichia coli from water using functionalized porous ceramic disk filter coated with Fe/TiO2 nano-composites. J. Water Process Eng. 33 (2020). https://doi.org/10.1016/j.jwpe.2019.101013

  • Zheng, C.-H., Cheng, L.-M., Li, T., Luo, Z.-Y., Cen, K.-F.: Filtration combustion characteristics of low calorific gas in SiC foams. Fuel 89, 2331–2337 (2010)

  • Zhong, J., Sun, X., Wang, C.: Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration. Sep. Purif. Technol. 32, 93–98 (2003)

  • Zhou, R., Shen, H., Zhao, M.: Simulation studies on protector of pulse-jet cleaning filter bag. Energy Procedia 16, 426–431 (2012)

  • Zocca, A., Elsayed, H., Bernardo, E., Gomes, C.M., Lopez-Heredia, M.A., Knabe, C., Colombo, P., Günster, J.: 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder. Biofabrication 7, 25008 (2015)

8 applications of porous ceramic materials

8 applications of porous ceramic materials

Time: 2021-03-17   Writer: mingrui

8 applications of porous ceramic materials

 

 

Pore-ceramic is a new type of ceramic material, also known as pore-functional ceramics. It is a kind of ceramic material with a large number of interconnected or closed pores in the body after it is shaped and fired at high temperature.

Porous ceramics can be divided into foam ceramics, honeycomb ceramics and granular ceramics according to the pore-forming methods and voids. The corresponding porosity is as follows:

Porous ceramic materials due to its unique porous structure and small volume density, high specific surface area, low thermal conductivity, and ceramic materials themselves unique high temperature resistance, high strength, good chemical stability and other characteristics, has been widely used in environmental protection, energy saving, chemical, smelting, food, pharmaceutical, biological medical and other fields.

Porous ceramic materials are used in filtration and separation devices

 

Porous filter ceramic tube

The filter unit composed of porous ceramic plate or tubular products has the characteristics of large filtration area and high filtration efficiency.It is widely used in water purification, oil separation and filtration, organic solution, acid and alkali solution, other viscous liquid and compressed air, coke oven gas, steam, methane, acetylene and other gas separation.Due to the advantages of high temperature resistance, wear resistance, chemical corrosion resistance and high mechanical strength, porous ceramics are increasingly showing their unique advantages in the application fields of corrosive fluids, high-temperature fluids and molten metals.

Porous ceramic material is used in sound absorption and noise reduction device

 

Honeycomb ceramic sound-absorbing material

Porous ceramics as a sound-absorbing material is mainly to use its diffusion function, that is, through the porous structure of sound waves caused by the air pressure to disperse, to achieve the purpose of sound-absorbing.Porous ceramics as sound-absorbing materials require small pore size (20 ~ 150 m), high porosity (more than 60%) and high mechanical strength.Porous ceramics have now been used in high-rise buildings, tunnels, subways and other places with high requirements for fire prevention, TV transmission centers, cinemas and other places with high requirements for sound insulation.

Porous ceramic material is used as catalyst carrier

 

Porous ceramic catalyst carrier

Since porous ceramics have good adsorption capacity and activity, the conversion efficiency and reaction rate will be greatly improved after the reaction fluid passes through the porous ceramic channel after the catalyst is covered.At present, the research focus of porous ceramics as catalyst carrier is inorganic separation catalytic membrane, which combines the separation and catalytic characteristics of porous ceramic materials, so it has a broad application prospect.

Porous ceramic materials used for sensitive components

 

Ceramic sensor

The working principle of the humidity and gas sensitive elements of the ceramic sensor is that when the microporous ceramic is placed in the gas or liquid medium, some components in the medium will be adsorbed by the porous body or react with it. At this time, the potential or current of the microporous ceramic will change, so as to determine the composition of the gas or liquid.Ceramic sensor has the characteristics of high temperature resistance, corrosion resistance, simple manufacturing process, sensitive and accurate test, and can be suitable for many special occasions.

Porous ceramic materials used for diaphragm materials

 

Ceramic coated diaphragm

Porous ceramics has a large area of contact with liquid and gas, and the cell voltage is much lower than that of common materials. Therefore, it can be used in electrolytic membrane materials to greatly reduce the voltage of electrolytic cell, improve the electrolytic efficiency, and save energy and electrode materials.Porous ceramic membranes are used in chemical cells, fuel cells and photochemical cells.

Porous ceramic material is used in air distribution device

Through the porous ceramic material gas blowing into the solid powder, can make the powder in the loose and fluidized state, achieve the purpose of rapid heat transfer, heat evenly, accelerate the reaction rate, prevent powder, suitable for powder conveying, heating, drying and cooling, especially suitable for the cement, lime and alumina powder such as manufacturers, production and powder conveying.

Porous ceramic materials are used for heat insulation

 

Porous ceramic heat accumulator

Porous ceramics have become the traditional thermal insulation materials due to their high porosity, low density, low thermal conductivity, huge thermal resistance and small volume heat capacity.Advanced porous ceramic insulation for shuttle casings, missile class.

Porous ceramic materials are used in biological medicine

 

Porous calcium phosphate bioceramics

Porous bioceramics developed on the basis of traditional bioceramics are used in the field of biological medicine because of their good biocompatibility, stable physical and chemical properties and non-toxic side effects.Teeth and other implants made of porous ceramics have been used in clinical practice.

The company is the world’s best Microporous Metal Ceramic Material supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.